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ABSTRACT 
 
The basic purpose of the paper is simple; having proposed a set of axioms or ‘basic 

truths’ regarding Structural Health Monitoring (SHM) in a previous paper, the authors 
would like to extend the set by the proposal for a new axiom. This axiom relates to an 
observation that the presence of damage in a structure or system usually results in 
increased complexity of measured responses or features. It is argued that this 
observation could lead to principled means of selecting effective features for SHM.   

 
INTRODUCTION 

 
The authors have previously suggested a set of axioms for Structural Health 

Monitoring (SHM) [1]. As usual in this context, the word ‘axiom’ is being used 
here to suggest a fundamental truth at the root of any SHM methodology.  

The previously proposed axioms are: 
Axiom I: All materials have inherent flaws or defects. 
Axiom II: Damage Assessment requires a comparison between two system states. 
Axiom III: Identifying the existence and location of damage can be done in an unsupervised 

learning mode, but identifying the type of damage present and the damage severity 
can generally only be done in a supervised learning mode. 

Axiom IVa: Sensors cannot measure damage. Feature extraction through signal processing 
and statistical classification are necessary to convert sensor data into damage 
information. 

Axiom IVb: Without intelligent feature extraction, the more sensitive a measurement is to 
damage, the more sensitive it is to changing operational and environmental 
conditions. 

Axiom V:  The length and time scales associated with damage initiation and evolution dictate 
the required properties of the SHM sensing system. 
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Axiom VI: There is a trade-off between the sensitivity to damage of an algorithm and its noise 
rejection capability. 

Axiom VII: The size of damage that can be detected from changes in system dynamics is 
inversely proportional to the frequency range of excitation.  

The authors would now like to add an additional axiom: damage increases the 
complexity of a system. Note that at this point complexity is left simply as a concept 
and not precisely defined because it can be assessed by many different methods 
ranging from very qualitative visual methods to complex quantitative measures.  To 
begin, this paper will first provide heuristic evidence for this new axiom using 
examples where the increase in some form of complexity is evident in images or 
signals.  Next, the discussion will focus on more quantifiable definitions of complexity 
that are tied to the concepts of probability distribution and entropy as defined in 
information theory [2].  The paper will conclude with a discussion on how the concept 
of complexity can be used to develop more rigorous approaches to feature selection.  

COMPLEXITY IN SHM: A HEURISITIC DISCUSSION 

If one presents a person with the pictures in Figure 1, and they are asked to classify 
this ship as damaged or undamaged, they will almost universally classify it as 
damaged. There are two reasons for this. The first is based on the fact that the person 
will usually frame an internalized comparison between all the visual examples of an 
undamaged structure they have so far experienced and they will note that the images 
presented deviate from this norm. The second reason - and this could apply even if the 
person has not seen an undamaged exemplar of the structure - relates to the 
‘appearance’ of damage. Most engineered structures are designed to be ‘smooth’; 
there are practical reasons for this e.g. minimizing drag, and there are aesthetic 
reasons. In any case, by the latter criterion, the person is likely to be making some 
qualitative assessment of complexity. For the ship in Figure 1, a person could perceive 
complexity in the very irregular nature of the ship’s bow and note that few engineered 
structures have such irregular geometries.  This concept of complexity can be 
extended to the case of corrosion as shown in Figure 1.  Again, the corrosion adds 
complexity to the image of the girder through the increase in the number of edges or 
irregularities in this image.  Engineers do not like to deal with such qualitative 
concepts and therefore more quantifiable means of assessing complexity are needed if 
such a concept is to be used in practice. 

 

  
Figure 1. Damaged ship structure and corrosion on steel bridge girder. 



QUANTIFYING COMPLEXITY THROUGH STATISTICS AND SIGNAL 
PROCESSING 

A logical first step towards developing more quantifiable measures of complexity 
is to apply concepts of statistics and signal processing to data from the damaged and 
undamaged systems.  To illustrate this concept, we will examine data from the test 
structure shown in Figure 2 and described in detail in [3].  Figure 3 shows the 
acceleration time history responses to a harmonic base input, measured on the top 
floor when the bumper is not present (undamaged) and when it is present (damaged).   
The response time history is seen to increase in complexity when damage is present 
through the irregular nature of the response.  Normalized power spectra of these 
signals allow for a more quantifiable assessment of this complexity by identifying 
harmonics of the excitation frequency that are produced as a result of the impacting.   
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Figure 2. Diagram of test structure 
 

 
Figure 3. Response of the test structure in its undamaged state (left) and damaged state (right). 
 

QUANTIFYING COMPLEXITY BY THE USE OF THE PROBABILITY 
DISTRIBUTION FUNCTION 

To more directly quantify complexity through changes in the probability 
distribution function, lets again examine the test structure shown in Figure 2.  This 
time the structure will be subjected to a random base input. Figure 4 shows the 
probability distribution functions for the undamaged and damaged systems.  Clear 
distortions in the pdf are evident as a result of the damage where the pdf is starting to 
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(a) 
 

(b) 
 
Figure 5. Response data from bilinear oscillator: (a) 𝜶 = 𝟏, (b) 𝜶 = 𝟏𝟎. 

 

(a) 

  

    (b)                                        (c) 

Figure 6. Response spectra from bilinear oscillator: (a) 𝜶 = 𝟏, (b) 𝜶 = 𝟏𝟎, (c) 𝜶 = 𝟏𝟎𝟎 
 
This example also allows one to make contact with a quantitative measure of 

complexity, or more properly, of information content. It is clear that the more complex 
pattern will require a greater amount of information in order to specify it than a 
simpler pattern. One way of encoding the information content of a pattern or signal is 
in terms of Shannon’s entropy function [2]. Suppose that the state of a system is 
encoded in a variable 𝑥, whose values are governed by a probability density function 𝑝(𝑥).  Shannon’s entropy function or information entropy is given by, 

 𝑆 = − ∫ 𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥                                              (3) 
 

The function has a minimum if all the probability is concentrated on a single state 
(total order) and a maximum if it is uniformly distributed over all states. The example 
considered here is not probabilistic, but it can be cast in a form where a probabilistic 
analogy is possible. Suppose that one were to normalise the spectrum (not the 
logarithmic version, but the linear version) by dividing by the total area under the 
spectrum; with a stretch of the imagination, one might say that the resulting function 𝑝(𝜔) represents the probability that an ‘atom’ of ‘response energy’ would be 
associated with a frequency 𝜔. Now the situation in Figure 6a corresponds to ‘total 
order’, all (most of) the energy is associated with the forcing frequency; as the 
parameter 𝛼 increases however, the energy is re-distributed across the spectrum and 
the order reduces. In order to illustrate this, the system in Eq. (1) was simulated with a 
range of 𝛼 values from 1 to 10, and the ‘spectral entropy’ values were computed using 
Eq. (3). The result of this calculation is shown in Figure 7. 

 



 
 
Figure 7. Spectral entropy measure as a function of the severity of the bilinear nonlinearity. 
 
Note that the information content or complexity of the spectrum increases 

monotonically as a function of 𝛼, the severity of the nonlinearity. The entropy starts to 
reach a limiting value as the energy becomes distributed over all the harmonics in a 
more uniform fashion. Because of this monotonic behavior, the entropy is revealed as 
a useful feature for SHM purposes. (Not quite, the entropy increases with the 
nonlinear severity rather than with increased damage here. In the case of a breathing 
crack, the progressing variable would be the length of the crack rather than the 
open/closed stiffness ratio.) Features based on, or motivated by, information content 
have appeared at various points in the development of SHM research [4].  

MEASURES OF COMPLEXITY 

Almost all of the features proposed in the SHM literature, particularly those based 
on the assumption that damage will cause an initially linear system to exhibit 
nonlinear characteristics, are in some way assessing changes in the complexity of a 
structure [5,6].  This increase in complexity is assessed through some analysis of the 
systems measured response.  Examples include the previously mentioned change in 
statistics, identification of harmonic generation, measures the continuity of a signal by 
parameters such as the Holder exponent, increase in residual errors associated with 
time-series models, and changes in wave propagation characteristics. 

This axiom will impact SHM more directly if one can use it to define better 
features for a particular SHM application.  By defining the type of damage that is of 
interest and then identifying how such damage increases the complexity of the 
structure and its associated dynamic response, one can begin to develop a principled 
approach to feature selection.  With further development it is anticipated that this 
feature selection process can be directly linked to the definition of a damage 
observability criteria.  Such rigorous procedures for feature selection and damage 
observability are essential developments that are needed to better transition SHM 
research to practice on in situ structures. 

CONCLUSIONS 

Anew Axiom for SHM has been proposed, based on the idea that damage 
increases the complexity of a system.  The definition of complexity was intentionally 
left somewhat vague as it can be assessed in a variety of different manners ranging 
from very qualitative and heuristic definitions to much more quantifiable definition 



rooted in information theory.  The definition will be dependent of the type of damage, 
the particular structure and the available data.  Again, the term axiom is being used to 
imply that the statement is  a “basic truth” for which there is evidence in the reported 
SHM literature.  The authors believe this is a potentially powerful axiom because with 
further development it can lead to a more principled approach to feature selection and 
the definition of damage observability criteria. 
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